If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5c^2+14c-3=0
a = 5; b = 14; c = -3;
Δ = b2-4ac
Δ = 142-4·5·(-3)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-16}{2*5}=\frac{-30}{10} =-3 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+16}{2*5}=\frac{2}{10} =1/5 $
| |m-7|=-13 | | 0.25(-16x-4)+3=-0.33+0.2 | | x/2+11=17 | | 2(m+4)=-30 | | 14=-3(2x-3) | | 3-5(x+7)=13 | | (3w-4)=-3(3+2w) | | 12+0.7x=-0.5x-3 | | -9s-5+13s=2-6s | | 6(y-10)= | | 8x-3=15x5x | | w/3+6=-12 | | 4x-12+6x-8=30 | | 1/4(-16x-4)+3=-1/3+1/5 | | 1/3x+4/3=2/9x+7/9 | | (X+20)=(4x-25) | | -2(-3+4x)=7+2x | | 9+x=2x+64/7 | | 0.60s+4=-2-0.4s | | x+35=49 | | 3.5(x+2)-6.5=2.5(x-4) | | 16x-6=250 | | 1y-6=1 | | -36=6s | | 4b-36+2b=12 | | -3w-47=44-3w | | 3b×4=24 | | 68+26+3x-4=180 | | -5+6x=3x+10 | | 5x+9=45+2x | | 8c+4=-148 | | -2x-3=-x+15 |